
NAT-PM-DC48 / NAT-PM-600LV

DC POWER MODULES

DESIGNED BY N.A.T. GMBH

TECHNICAL REFERENCE MANUAL V2.0

HW REVISION 1.X

TABLE OF CONTENTS

1. F	PREFACE	5
1.1.	Disclaimer	5
1.2.	About This Document	6
2. I	NTRODUCTION	7
2.1.	Main Features	8
3. (QUICK START	10
3.1.	Unpacking	10
3.2.	Mechanical Requirements	10
3.3.	Voltage Requirements	11
	POWER SUPPLY	
3.3.2.	Hot-Swap	11
4. F	UNCTIONAL DESCRIPTION	12
4.1.	ЕММС	12
4.2.	Redundancy and Load Sharing	12
4.3.	LED Indicators	12
4.4.	Sensors	13
5. I	HARDWARE	14
5.1.	Front Panel and LEDs	14
5.2.	Connector- and Switch-Location NAT-PM-DC48	15
5.2.1.	J1: MICROCONTROLLER PROGRAMMING HEADER	16
5.2.2.		
5.2.3.		
5.2.4.	,	
5.2.5.		
5.3.	Connector- and Switch-Location NAT-PM-DC600LV	
5.3.1.		~ ~
	····	
5.3.2. 5.3.3.	P5: MICROCONTROLLER PROGRAMMING HEADER	20

NAT-PM-DC

TECHNICAL REFERENCE MANUAL V2.0

5.3.4.	P4 A/B – INPUT POWER CONNECTORS	22
5.3.5.	SW1: Hot-Swap-Switch	22
6. 0	OPERATION	23
6.1.	Insertion / Power up	23
6.2.	Power down / Extraction	23
6.3.	Airflow Requirements	23
6.4.	Firmware Update	23
6.5.	Power Channels and Power Module Configurations	24
6.5.1.	Power Module Setup #1: Redundancy (2 PMs)	25
6.5.2.	Power Module Setup #2: Load Sharing (2 PMs)	25
6.5.3.	Power Module Setup #3: N+1 Redundancy (3/4 PMs)	25
7. S	SPECIFICATIONS AND COMPLIANCES	27
7.1.	Internal Reference Documentation	27
7.2.	External Reference Documentation	27
7.3.	Standards Compliance	27
7.4.	Compliance to RoHS Directive	
7.5.	Compliance to WEEE Directive	
7.6.	Compliance to CE Directive	29
7.7.	•	
7.8.	Abbreviation List	
8. C	DOCUMENT'S HISTORY	

LIST OF TABLES

TABLE 1 – MAIN FEATURES	8
TABLE 2 – SENSOR OVERVIEW	13
TABLE 3 – J1: MICROCONTROLLER PROGRAMMING HEADER – PIN ASSIGNMENT	16
TABLE 4 – J2: PROGRAMMING HEADER – PIN ASSIGNMENT	16
TABLE 5 – P1A: HIGH POWER PINS	17
TABLE 6 – 1B – CONTROL SIGNAL AND MANAGEMENT POWER	17
TABLE 7 – P2 A/B: INPUT POWER CONNECTORS	
TABLE 8 – P2: PROGRAMMING HEADER – PIN ASSIGNMENT	20
TABLE 9 – P5: MICROCONTROLLER PROGRAMMING HEADER – PIN ASSIGNMENT	20
TABLE 10 – P1A: HIGH POWER PINS	
TABLE 11 – 1B – CONTROL SIGNAL AND MANAGEMENT POWER	21
TABLE 12 – P4 A/B: INPUT POWER CONNECTORS	22
TABLE 13 – ABBREVIATION LIST	29
TABLE 14 – DOCUMENT'S HISTORY	

LIST OF FIGURES

FIGURE 1 – BLOCK DIAGRAM NAT-PM-DC48	12
FIGURE 2 – NAT-PM-DC48: FRONT PANEL	14
FIGURE 3 – NAT-PM-DC600LV: FRONT PANEL	14
FIGURE 4 – NAT-PM-DC48 – LOCATION DIAGRAM	
FIGURE 5 – J1: MICROCONTROLLER PROGRAMMING HEADER	16
FIGURE 6 – J2: USB / DEBUG INTERFACE	16
FIGURE 7 – P2 A/B: INPUT POWER CONNECTORS	18
FIGURE 8 – NAT-PM-DC600LV – LOCATION DIAGRAM	
FIGURE 9 – P2: USB / DEBUG INTERFACE	20
FIGURE 10 – P5: MICROCONTROLLER PROGRAMMING HEADER	
FIGURE 11 – P4 A/B: INPUT POWER CONNECTORS	22
FIGURE 12 – POWER CHANNELS	24
FIGURE 13 – POWER MODULE SETUP #1: REDUNDANCY	25
FIGURE 14 – POWER MODULE SETUP #2: LOAD SHARING	25
FIGURE 15 - POWER MODULE SETUP #3: N+1 REDUNDANCY	26

1. PREFACE

1.1. Disclaimer

The following documentation, compiled by N.A.T. GmbH (henceforth called N.A.T.), represents the current status of the product's development. The documentation is updated on a regular basis. Any changes which might ensue, including those necessitated by updated specifications, are considered in the latest version of this documentation. N.A.T. is under no obligation to notify any person, organization, or institution of such changes or to make these changes public in any other way.

We must caution you, that this publication could include technical inaccuracies or typographical errors.

N.A.T. offers no warranty, either expressed or implied, for the contents of this documentation or for the product described therein, including but not limited to the warranties of merchant-ability or the fitness of the product for any specific purpose.

In no event will N.A.T. be liable for any loss of data or for errors in data utilization or processing resulting from the use of this product or the documentation. In particular, N.A.T. will not be responsible for any direct or indirect damages (including lost profits, lost savings, delays or interruptions in the flow of business activities, including but not limited to, special, incidental, consequential, or other similar damages) arising out of the use of or inability to use this product or the associated documentation, even if N.A.T. or any authorized N.A.T. representative has been advised of the possibility of such damages.

All registered names, trademarks etc. are property of their respective holders. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations (patent laws, trade mark laws, etc.) and therefore free for general use. In no case does N.A.T. guarantee that the information given in this documentation is free of such third-party rights.

Neither this documentation nor any part thereof may be copied, translated, or reduced to any electronic medium or machine form without the prior written consent from N.A.T. GmbH.

This product (and the associated documentation) is governed by the N.A.T. General Conditions and Terms of Delivery and Payment.

<u>Note:</u>

The release of the Hardware Manual is related to a certain HW board revision given in the document title. For HW revisions earlier than the one given in the document title please contact N.A.T. for the corresponding older Hardware Manual release.

1.2. About This Document

This document is intended to give an overview on the **NAT-PM-DC48's** and **NAT-PM-DC600LV's** functional capabilities. Most information is valid for both variants, so – unless otherwise specified – for reasons of clarity it is referred to **NAT-MCH-DC** only.

Preface

General information about this document

Introduction

Abstract on the NAT-PM-DC' main functionality and application field

Quick Start

Important information and mandatory requirements to be considered before operating the **NAT-PM-DC** for the first time

Functional Description

Detailed information on the individual devices and the **NAT-PM-DC'** main features

Hardware

Information about LEDs and connectors

Operation

Basic information about operating the **NAT-PM-DC** e.g., airflow, firmware update, Power Module configuration etc.

Specifications and Compliances

Detailed list of specifications, abbreviations, and datasheets of components referred to in this document, as well as standards, the **NAT-PM-DC** complies to

Document's History

Revision record

Note:

It is assumed, that the NAT-PM-DC is handled by qualified personnel only!

2. INTRODUCTION

Today's complex communication systems with latest hardware and an increased number of AMCs make high demands regarding power consumption. Otherwise, heat dissipation becomes a problem in densely populated system. Thus, highly efficient Power Modules with excellent performance at the same time are crucial for a MicroTCA system.

Both variants of the **NAT-PM-DC** have managed the balancing act: highly integrated with superior performance of up to 1300W (**NAT-PM-DC48**, depending on assembly option), they are the market's most efficient Power Modules for all MicroTCA applications.

They provide payload and management power for up to 12 Advanced Mezzanine Cards (AMCs), 2 Cooling Units (CUs) and 2 MicroTCA carrier Hub (MCH) modules. So, a total of 16 independent 12V channels for payload power and 3.3V for management power are supplied. Moreover, they ensure backup power for other Power Modules (Shared Management Power, SMP) within the system.

The **NAT-PM-DC48** offers power conversion from two -48VDC input sources, whereas the **NAT-PM-600LV** is sourced from a primary supply of 24V.

The Power Module's software has been developed and debugged using the **NAT-MCH** as a reference tool. It is fully compatible with any cards or modules inserted into a MicroTCA chassis. Application areas are, for instance:

- commercial-, military-, and telecommunication applications
- automation test equipment
- medical or security tasks
- video demand services
- industrial machine control and other clustered computing applications

2.1. Main Features

Table 1 – Main Features

Form Factor			
Single-width, full-size Form Factor			
EMMC			
FPGA	Lattice MachXO2		
Microcontroller	Atmel ATXMega		
	NAT-PM-DC600LV	NAT-PM-DC48	
12V Subsystem	 Max. power/channel: 80W / 6.6A@12V Fast trip current limit: 8.3A Max. inrush current: 19.4A Accuracy 12V: +2% / -2% Max. ripple @ 6.6A: <10mV 		
3.3V Subsystem	 Max. channel current: 180mA Fast trip current limit: 300mA Accuracy 3.3V: +5% / -0% Max. ripple @ 180mA: <20mV 		
DC IN	Dual +24V Power Input A/B Range: +18V - +36V Dual -48V Power Input A/B Range: -38V60V		
Max. Output power (assembly option)			
Insulation Input/Output	• 1500V		
Redundancy	• N+1 and 2+2		
Safety Standard	Safety Standard • SELV		
	LEDs		
	 Standard AMC LEDs (Status, Fault, Hot-Swap) LEDs for optical load indication 		
	Compliance		
 MTCA.0 MTCA.1 (NAT-PM-DC48 only) AMC.0 IMPI RoHS EN55032:2012 +AC :2013 EN61000-6-2:2005 +AC :2005 			
	Order Codes NAT-PM-DCxxxLV		
600LV-ET	600LV-ET • 600W DC, dual +24VDC input, 12VDC and 3.3VDC output for 16 channels; extended temperature range: -40°C - +85°C		
300LV	-	VDC and 3.3VDC output for 16 channel	
600LV	600LV • 600W DC, dual +24VDC input, 12VDC and 3.3VDC output for 16 channel		

Order Codes NAT-PM-DC48- [Option]		
1300-0.1SF	• 1300W full size single width, MTCA.1 compliant with retention screws	
860-0.0SF	860W full size single width, MTCA.0 compliant	
860-0.1SF	860W full size single width, MTCA.1 compliant with retention screws	
1300-0.0SF	1300W full size single width, MTCA.0 compliant	
Environmental		
Operating Environment	 Default temperature range: 0° to +55° Celsius Extended temperature range: -40° to +85° Celsius Humidity: 10% to 90% (non-condensing) 	
Storage Environment	 Default temperature range: -40° to +85° Celsius Humidity: 10% to 90% (non-condensing) 	

3. QUICK START

To ensure proper functioning of the **NAT-PM-DC** during its usual lifetime, take the following precautions before handling the board.

3.1. Unpacking

Electrostatic discharge, incorrect board installation and uninstallation can damage circuits or shorten their lifetime. Before touching integrated circuits, ensure to take all required precautions for handling electrostatic devices.

Avoid touching gold contacts of the connectors to ensure proper contact when connecting the **NAT-PM-DC** to the MTCA-System.

Make sure that the board and its attachments are undamaged and complete according to delivery note.

3.2. Mechanical Requirements

The installation requires a MicroTCA backplane and cooling devices.

Before installing or uninstalling the **NAT-PM-DC**, read the Installation Guide and the User's Manual of the **NAT-PM-DC** and the µTCA system the board will be plugged into.

Check all installed boards and modules for steps that you have to take before turning on or off the power. After taking those steps, turn on or off the power if necessary.

Make sure the part to be installed / removed is Hot-Swap capable, if you don't switch off the power.

Ensure that the **NAT-PM-DC** is connected with the connector(s) completely inserted.

When operating the board in areas of strong electromagnetic radiation, ensure that the module is bolted to the rear panel or rack, and shielded by closed housing.

NAT-PM-DC

TECHNICAL REFERENCE MANUAL V2.0

3.3. Voltage Requirements

3.3.1. Power supply

NAT-PM-DC48: Dual -48V Power Input A/B (Range: -38V - -60V)

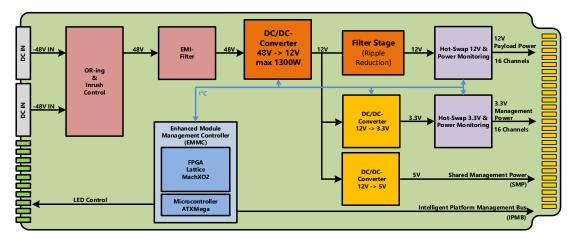
NAT-PM-DC600LV: Dual +24V Power Input A/B (Range: +18V - +36V)

3.3.2. Hot-Swap

The **NAT-PM-DC** supports hot-swapping, which means that the board can be inserted or extracted during normal system operation without affecting other modules.

Make sure to follow the procedure *exactly* to prevent the **NAT-PM-DC** or the system it is plugged into from damage!

Insertion of a hot-swap-capable module


- Ensure the module and the backplane support hot-swapping
- Ensure that the hot-swap-handle is in "unlock"-position (pulled out)
- Push the **NAT-PM-DC** carefully into the dedicated connector until it is completely inserted
- The blue HS-LED turns solid on
- With pushing the hot-swap-handle to "lock"-position, the HS-LED starts blinking and the IPMI-Controller of the backplane detects the board
- If the information provided by the **NAT-PM-DC** is valid, the backplane enables payload power and the blue HS-LED turns off

Extraction of a hot-swap-capable module

- Pull the hot-swap-handle in "unlock"-position
- The blue HS-LED starts blinking
- The IPMI-Controller of the backplane disables payload power
- The HS-LED turns solid on
- Pull the **NAT-PM-DC** carefully out of the backplane

4. **FUNCTIONAL DESCRIPTION**

Apart from the different input voltages, both variants of the **NAT-PM-DC** have basically the same design. Using the example of the **NAT-PM-DC48**, the following figures give an overview of the functional blocks.

Figure 1 – Block Diagram NAT-PM-DC48

4.1. EMMC

The **NAT-PM-DC** includes a robust Enhanced Module Management Controller (EMMC). It interfaces the power functionality via IPMB to the MCH.

4.2. Redundancy and Load Sharing

The **NAT-PM-DC** supports redundancy as well as load sharing modes in accordance with the MTCA specifications. Detailed information can be found in chapter 6.5 Power Channels and Power Module Configurations.

In case of an input power supply failure, the on-board EMMC can be supplied with SMP power by other power modules, so that the System/Carrier Manager is able to analyze root cause failure.

4.3. LED Indicators

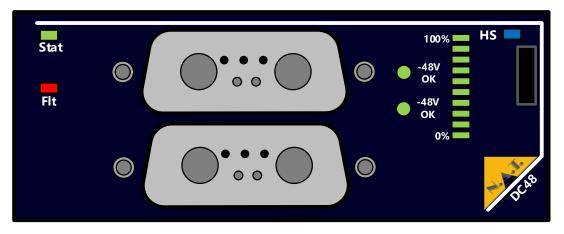
The LED light bar at the front panel of the **NAT-PM-DC** shows the total power load of the module on a scale from 0 - 100% in real time.

4.4. Sensors

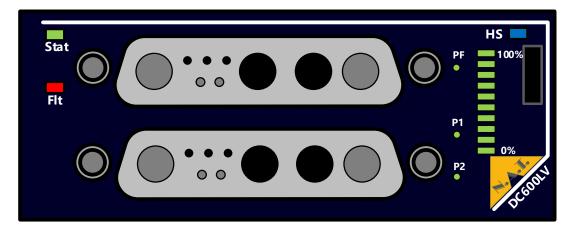
The **NAT-PM-DC** features several sensors to capture and monitor temperature-, voltage-, and current-conditions of the module. Details are shown in the following table:

Sensor #	Sensor Type	Name	Description
1	Temp	TBrick-A	Temperature of 24V/48V Converter Brick A
2	Temp	TBrick-B	Temperature of 24/48V Converter Brick B
3	Temp	T-Base	Temperature of Base Board
4	Voltage	VIN	Input Voltage
5	Voltage	VOUT-A	Output Voltage Channel A
6	Voltage	VOUT-B	Output Voltage Channel B
7	Voltage	12V	12V Monitoring
8	Voltage	3.3V	3.3V Monitoring
9	Current	I-Sum	Sum of all Power Channels
10	Current	Ch01 Current	Power Channel 1 – MCH1
11	Current	Ch02 Current	Power Channel 2 – MCH2
12	Current	Ch03 Current	Power Channel 3 – CU1
13	Current	Ch04 Current	Power Channel 4 – CU2
14	Current	Ch05 Current	Power Channel 5 – AMC1
15	Current	Ch06 Current	Power Channel 6 – AMC2
16	Current	Ch07 Current	Power Channel 7 – AMC3
17	Current	Ch08 Current	Power Channel 8 – AMC4
18	Current	Ch09 Current	Power Channel 9 – AMC5
19	Current	Ch10 Current	Power Channel 10 – AMC6
20	Current	Ch11 Current	Power Channel 11 – AMC7
21	Current	Ch12 Current	Power Channel 12 – AMC8
22	Current	Ch13 Current	Power Channel 13 – AMC9
23	Current	Ch14 Current	Power Channel 14 – AMC10
24	Current	Ch15 Current	Power Channel 15 – AMC11
25	Current	Ch16 Current	Power Channel 16 – AMC12

Table 2 – Sensor Overview



5. HARDWARE


5.1. Front Panel and LEDs

The **NAT-PM-DC** is equipped with various LEDs described in the following section.

Figure 2 – NAT-PM-DC48: Front Panel

Figure 3 – NAT-PM-DC600LV: Front Panel

The module contains the standard LEDs consisting of a blue hot-swap LED, a red fault indication LED and an orange/green general purpose status LED controlled by the MMC. The fault indication LED turns to "**On**" if the temperature sensor registers a temperature value falling below or exceeding a threshold level. If the temperature returns to normal value, the LED is switched to "**Off**" again. For detailed information on the behavior of the HS-LED, please refer to chapter 3.3.2 Hot-Swap.

5.2. Connector- and Switch-Location NAT-PM-DC48

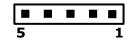
Figure 4 – NAT-PM-DC48 – Location Diagram

P2 Input Power Connector	OR-ing Inrush Control EMI Filter	J2 J1 DC/DC Conversion	P1 Backplane Power Connector

For standard interfaces, no further explanation is given. Please refer to the particular standards for more information.

Pin assignments and drawings of non-standard interfaces are described in the following paragraphs.

<u>Connectors on top side</u>: drawings imply the board is orientated with the PM connector to the *right* side


<u>Connectors on bottom side</u>: drawings imply the board is orientated with the PM connector to the **left** side

5.2.1. J1: Microcontroller Programming Header

J1 functions as microcontroller programming interface of the NAT-PM-DC48.

Figure 5 – J1: Microcontroller Programming Header

Table 3 – J1: Microcontroller Programming Header – Pin Assignment

Pin #	Signal	Signal	Pin #
1	PDI_DATA	+3.3V_EMMC	2
3	PDI_CLOCK	GND	4
5	Test		

5.2.2. J2: USB/Debug Interface

J2 is the USB / Debug interface of the NAT-PM-DC48.

Figure 6 – J2: USB / Debug Interface

Table 4 – J2: Programming Header – Pin Assignment

Pin #	Signal	Signal	Pin #
1	Test	GND	2
3	DP	DN	4
5	VBUS		

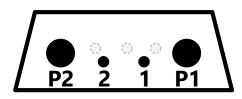
5.2.3. P1 – Backplane Power Connector

The Backplane Power Connector is made up of two sections: high power pins (part A) and control signal and management power.

Pin #	Signal	Signal	Pin #
1	PP_M1	PP_AMC1	13
2	PP_CU1	PP_AMC2	14
3	PP_CU2	PP_AMC3	15
4	GND	PP_AMC4	16
5	GND	PP_AMC5	17
6	GND	PP_AMC6	18
7	GND	PP_AMC7	19
8	GND	PP_AMC8	20
9	GND	PP_AMC9	21
10	GND	PP_AMC10	22
11	GND	PP_AMC11	23
12	PP_M2	PP_AMC12	24

Table 5 – P1A: High Power Pins

Table 6 – 1B – Control Signal	and Management Power
-------------------------------	----------------------


Pin #	Α	В	С	D	E	F	G	Н
1	PS_PM#	PM_OK#	PS1_M1	PS1_CU1	EN_M1#	EN_CU1	MP_M1	MP_CU1
			#	#		#		
2	TCK	PMP_A#	PS1_2#	PS1_1#	EN_2#	EN_1#	MP_2	MP_1
3	TMS	PMP_B#	PS1_4#	PS1_3#	EN_4#	EN_3#	MP_4	MP_3
4	TRST#	PMP_C#	PS1_6#	PS1_5#	EN_6#	EN_5#	MP_6	MP_5
5	TDO RST_PM		PS1_8#	PS1_7#	EN_8#	EN_7#	MP_8	MP_7
		_IN#						
6	TDI	RST_PM	PS1_10#	PS1_9#	EN_10#	EN_9#	MP_10	MP_9
		_A#						
7	GA0	RST_PM	PS1_12#	PS1_11#	EN_12#	EN_11#	MP_12	MP_11
		_B#						
8	GA1	RST_PM	PS1_M2	PS1_CU2	EN_M2#	EN_CU2	MP_M2	MP_CU2
		_C#	#	#		#		
9	GA2	SMP	SCL_B	SDA_B	SCL_A	SDA_A	PWR_O	PWR_O
							N_M2	N_M1

5.2.4. P2 A/B – Input Power Connectors

P2 A/B are the input power connectors of the **NAT-PM-DC48**.

Figure 7 – P2 A/B: Input Power Connectors

Table 7 – P2 A/B: Input Power Connectors

Pin #	Signal	Comment
P1	-48V Return	Input Power (+)
1	Control *	Control
2	Control Return*	Control
P2	-48V	Input Power (-)

Note: the Control and Control Return pins shall be tied together in the external connector.

5.2.5. SW1: Hot-Swap-Switch

Switch SW1 is used to support hot-swapping of the module. It conforms to PICMG AMC.0.

5.3. Connector- and Switch-Location NAT-PM-DC600LV

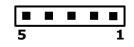
Figure 8 – NAT-PM-DC600LV – Location Diagram

		P2 P5	
P4 Input Power Connector	OR-ing Inrush Control EMI Filter	DC/DC Conversion	P1 Backplane Power Connector

For standard interfaces, no further explanation is given. Please refer to the particular standards for more information.

Pin assignments and drawings of non-standard interfaces are described in the following paragraphs.

<u>Connectors on top side</u>: drawings imply the board is orientated with the PM connector to the *right* side


<u>Connectors on bottom side</u>: drawings imply the board is orientated with the PM connector to the **left** side

5.3.1. P2: USB/Debug Interface

P2 is the USB / Debug interface of the **NAT-PM- DC600LV**.

Figure 9 – P2: USB / Debug Interface

Table 8 – P2: Programming Header – Pin Assignment

Pin #	Signal	Signal	Pin #
1	Test	GND	2
3	DP	DN	4
5	VBUS		

5.3.2. P5: Microcontroller Programming Header

P5 functions as microcontroller programming interface of the **NAT-PM-DC600LV**.

Figure 10 – P5: Microcontroller Programming Header

Table 9 – P5: Microcontroller Programming Header – Pin Assignment

Pin #	Signal	Signal	Pin #
1	PDI_DATA	+3.3V_EMMC	2
3	PDI_CLOCK	GND	4
5	Test		

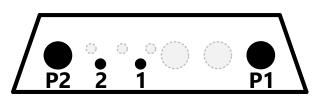
5.3.3. P1 – Backplane Power Connector

The Backplane Power Connector is made up of two sections: high power pins (part A) and control signal and management power.

Pin #	Signal	Signal	Pin #
1	PP_M1	PP_AMC1	13
2	PP_CU1	PP_AMC2	14
3	PP_CU2	PP_AMC3	15
4	GND	PP_AMC4	16
5	GND	PP_AMC5	17
6	GND	PP_AMC6	18
7	GND	PP_AMC7	19
8	GND	PP_AMC8	20
9	GND	PP_AMC9	21
10	GND	PP_AMC10	22
11	GND	PP_AMC11	23
12	PP_M2	PP_AMC12	24

Table 10 – P1A: High Power Pins

Table 11 – 1B – Control Signal and Management Power


Pin #	Α	В	С	D	E	F	G	н
1	PS_PM#	PM_OK#	PS1_M1	PS1_CU1	EN_M1#	EN_CU1	MP_M1	MP_CU1
			#	#		#		
2	TCK	PMP_A#	PS1_2#	PS1_1#	EN_2#	EN_1#	MP_2	MP_1
3	TMS	PMP_B#	PS1_4#	PS1_3#	EN_4#	EN_3#	MP_4	MP_3
4	TRST#	PMP_C#	PS1_6#	PS1_5#	EN_6#	EN_5#	MP_6	MP_5
5	TDO	RST_PM	PS1_8#	PS1_7#	EN_8#	EN_7#	MP_8	MP_7
		_IN#						
6	TDI	RST_PM	PS1_10#	PS1_9#	EN_10#	EN_9#	MP_10	MP_9
		_A#						
7	GA0	RST_PM	PS1_12#	PS1_11#	EN_12#	EN_11#	MP_12	MP_11
		_B#						
8	GA1	RST_PM	PS1_M2	PS1_CU2	EN_M2#	EN_CU2	MP_M2	MP_CU2
		_C#	#	#		#		
9	GA2	SMP	SCL_B	SDA_B	SCL_A	SDA_A	PWR_O	PWR_O
							N_M2	N_M1

5.3.4. P4 A/B – Input Power Connectors

P4 A/B are the input power connectors of the **NAT-PM-DC600LV**.

Figure 11 – P4 A/B: Input Power Connectors

Table 12 – P4 A/B: Input Power Connectors

Pin #	Signal	Comment
P1	+24V Input	Input Power (+)
1	Control *	Control
2	Control Return*	Control
P2	+24V Return	Input Power (-)

Note: the Control and Control Return pins shall be tied together in the external connector.

5.3.5. SW1: Hot-Swap-Switch

Switch SW1 is used to support hot-swapping of the module. It conforms to PICMG AMC.0.

6. **OPERATION**

6.1. Insertion / Power up

After placing the **NAT-PM-DC** in a MTCA Rack the system is powered up as soon as the primary DC power source is available. The Cooling Unit(s) and MCH(s) are powered up in autonomous mode. As soon as the MCH has taken control over the system, the green WD LED starts to blink. From this time on the power module is under control of the MCH. The MCH is responsible for directing the power module to power up further AMCs in the system.

For detailed information about the Hot-Swap process, please refer to chapter 3.3.2 Hot-Swap.

6.2. Power down / Extraction

The power down / hot swap process is started by pulling the module's hot swap handle. In a non-redundant system the MCH will switch off payload and management power channels for the AMCs, Cooling Units, and the MCH itself. In a redundant system, finally the system remains powered by the second Power Module.

As soon as the power module's blue LED is solid on the module is ready for extraction.

For detailed information about the Hot-Swap process, please refer to chapter 3.3.2 Hot-Swap.

6.3. Airflow Requirements

All N.A.T. power modules do have very good conversion efficiencies. Nevertheless, still a certain amount of heat dissipation must be disposed by the airflow, in which a higher ambient temperature requires a higher airflow.

For detailed advice on your particular system, please contact NAT.

6.4. Firmware Update

The **NAT-PM-DC** supports firmware updates by the HPM (Hardware Platform Management) upgrade mechanism. Update files usually are provided in compressed format (.zip) and need to be un-compressed before the update can be executed. To get the latest firmware update, please contact N.A.T.

The update can be executed by **NATview** or any other IPMI /RMCP front end tool.

Please use the following ipmitool command to upgrade the power supply firmware:

ipmitool -H <MCH-IP Addr.> -P "" -B 0 -b 7 -T 0x82 -t 0xc2 hpm upgrade pm_ac1000_V112.hpm activate

To verify the installed version (after a power cycle), please use the following:

NAT-PM-DC

TECHNICAL REFERENCE MANUAL V2.0

ipmitool -H <MCH-IP Addr.> -P "" -B 0 -b 7 -T 0x82 -t 0xc2 hpm check

where

0xc2 is the IP address of power module PM1

0xc4 is the IP address of power module PM2

0xc6 is the IP address of power module PM3

0xc8 is the IP address of power module PM4

More information regarding firmware updates can be found in the **NAT-MCH** User's Manual, chapter *Ipmitool*.

6.5. Power Channels and Power Module Configurations

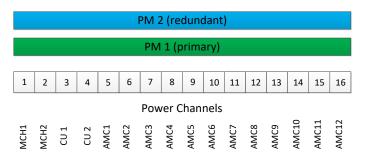
Up to16 power channels are available in an MTCA system, one power channel for every FRU (MCHs, CUs, and AMCs) in the system.

Figure 12 – Power Channels

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Power Channels														
MCH1	MCH2	CU 1	CU 2	AMC1	AMC2	AMC3	AMC4	AMC5	AMC6	AMC7	AMC8	AMC9	AMC10	AMC11	AMC12

To every power channel up to two Power Modules can be assigned, one primary and one secondary. The **NAT-MCH** firmware supports up to four Power Modules. With three or four Power Modules, it is possible to realize a N+1 redundancy or redundant load sharing configuration.

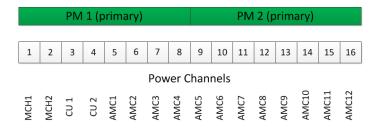
The most common setup scenarios are described in the following paragraphs.


Information about the assignment and configuration of the Power Modules is stored in the backplane FRU, which can be configured via. **NATView**.

6.5.1. Power Module Setup #1: Redundancy (2 PMs)

A traditional redundant setup features two Power Modules, with every one of them assigned to every power channel. When the primary Power Module fails, the secondary Power Module will take over and the system will work further without interruption.

In a redundancy setup, only the power of one Power Module is available.


Figure 13 – Power Module Setup #1: Redundancy

6.5.2. Power Module Setup #2: Load Sharing (2 PMs)

In a load sharing configuration, only one Power Module is assigned to a power channel. The total power of all Power Modules can be used for the system, but when a Power Module fails, every FRU assigned to this Power Module also fails due to missing power.

Figure 14 – Power Module Setup #2: Load Sharing

6.5.3. Power Module Setup #3: N+1 Redundancy (3/4 PMs)

An N+1 redundant configuration provides two or three primary Power Modules and one secondary Power Module. The power budget for the complete system is the sum of the primary Power Modules.

When one of the primary Power Modules fails, the secondary Power Module will take over immediately.

	PM 4 (redundant)														
P	PM 1 (primary) PM 2 (primary) PM 3 (primary)														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
						Pov	ver C	Chan	nels						
MCH1	MCH2	CU 1	CU 2	AMC1	AMC2	AMC3	AMC4	AMC5	AMC6	AMC7	AMC8	AMC9	AMC10	AMC11	AMC12

Figure 15 - Power Module Setup #3: N+1 Redundancy

7. SPECIFICATIONS AND COMPLIANCES

7.1. Internal Reference Documentation

• NAT-MCH User's Manual: https://nateurope.com/product/nat-mch/

7.2. External Reference Documentation

- Microchip ATxmega128 Microcontroller Datasheet, DS40002058A, Rev. A 08/2018
- Lattice MachXO2 Family Datasheet, DS1035, V. 3.3 03/2017

7.3. Standards Compliance

- MTCA.0
- MTCA.1 (NAT-PM-DC48 only)
- AMC.0
- IMPI
- EN55032:2012 +AC :2013
- EN61000-6-2:2005 +AC :2005

7.4. Compliance to RoHS Directive

Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS) predicts that all electrical and electronic equipment being put on the European market after June 30th, 2006 must contain lead, mercury, hexavalent chromium, poly-brominated biphenyls (PBB) and poly-brominated diphenyl ethers (PBDE) and cadmium in maximum concentration values of 0.1% respective 0.01% by weight in homogenous materials only.

As these hazardous substances are currently used with semiconductors, plastics (i.e. semiconductor packages, connectors) and soldering tin any hardware product is affected by the RoHS directive if it does not belong to one of the groups of products exempted from the RoHS directive.

Although many of hardware products of N.A.T. are exempted from the RoHS directive it is a declared policy of N.A.T. to provide all products fully compliant to the RoHS directive as soon as possible. For this purpose since January 31st, 2005 N.A.T. is requesting RoHS compliant deliveries from its suppliers. Special attention and care has been paid to the production cycle, so that wherever and whenever possible RoHS components are used with N.A.T. hardware products already.

7.5. Compliance to WEEE Directive

Directive 2002/95/EC of the European Commission on "Waste Electrical and Electronic Equipment" (WEEE) predicts that every manufacturer of electrical and electronical equipment which is put on the European market has to contribute to the reuse, recycling and other forms of recovery of such waste so as to reduce disposal. Moreover this directive refers to the Directive 2002/95/EC of the European Commission on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS).

Having its main focus on private persons and households using such electrical and electronic equipment the directive also affects business-to-business relationships. The directive is quite restrictive on how such waste of private persons and households has to be handled by the supplier/manufacturer; however, it allows a greater flexibility in business-to-business relationships. This pays tribute to the fact with industrial use electrical and electronical products are commonly integrated into larger and more complex environments or systems that cannot easily be split up again when it comes to their disposal at the end of their life cycles.

As N.A.T. products are solely sold to industrial customers, by special arrangement at time of purchase the customer agreed to take the responsibility for a WEEE compliant disposal of the used N.A.T. product. Moreover, all N.A.T. products are marked according to the directive with a crossed out bin to indicate that these products within the European Community must not be disposed with regular waste.

If you have any questions on the policy of N.A.T. regarding the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS) or the Directive 2002/95/EC of the European Commission on "Waste Electrical and Electronic Equipment" (WEEE) please contact N.A.T. by phone or e-mail.

7.6. Compliance to CE Directive

Compliance to the CE directive is declared. A 'CE' sign can be found on the PCB.

7.7. Compliance to REACH

The REACH EU regulation (Regulation (EC) No 1907/2006) is known to N.A.T. GmbH. N.A.T. did not receive information from their European suppliers of substances of very high concern of the ECHA candidate list. Article 7(2) of REACH is notable as no substances are intentionally being released by NAT products and as no hazardous substances are contained. Information remains in effect or will be otherwise stated immediately to our customers.

7.8. Abbreviation List

Table 13 – Abbreviation List

Abbreviation	Description
AMC	Advanced Mezzanine Card
BIOS	Basic Input/Output System
COM Express	Computer-On-Module Express
DDI	Dual Display Interface
EEPROM	Electrically Erasable PROM
EMC	Electromagnetic Compatibility
FLASH	Non-Volatile Memory
GbE	Gigabit Ethernet
HS	Hot Swap
l ² C	Inter-Integrated Circuit
I/O	Input/Output
IPMB	Intelligent Platform Management Bus
IPMI	Intelligent Platform Management Interface
LTE	Long Term Evolution
μC	Microcontroller
µTCA/MTCA/MicroTCA	Micro Telecommunications Computing Architecture
МСН	μTCA/MTCA Carrier Hub
ММС	Module Management Controller
PCI(e)	Peripheral Component Interconnect (Express)
PrAMC	Processor AMC
(P)ROM	(Programmable) Read Only Memory
SATA	Serial Advanced Technology Attachment
SD-Card	Secure Digital Memory Card
SerDes	Serializer/Deserializer
SGMII	Serial Gigabit Media Independent Interface
SPI (FLASH)	Serial Peripheral Interface (FLASH)
SSD	Solid State Drive
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
WiFi	Wireless Fidelity – wireless network

8. DOCUMENT'S HISTORY

Table 14 – Document's History

Rev	Date	Description	Author
1.0	20.06.2012	Initial Release	hl
1.1	21.06.2012	 Added operating chapter and air flow requirements 	hl
1.2	28.02.2013	 Added remark concerning dependency of output power on input voltage 	hl
1.3	06.05.2013	 Added ripple voltage information, minor corrections 	te
1.4	15.10.2013	 Added reference to NAT-PM-DC840 	hl
1.5	15.10.2014	 Adapted to new layout incl. new arrangement of chapters Changed document's name from "User's Manual" to "Technical Reference Manual" Removed information about NAT-PM-DC780 due to end of life Updated "List of used abbreviations" Added Figure 1 (photo of the module) Chapter 2: Corrected current value of max. channel current Added chapter 3.5: "Sensors" Added chapter 8: "Statement on Environmental Protection" Added chapter 9: "Known Bugs and Restrictions" Added Appendix A: "Reference 	Se
	26.02.2015	Documentation"Minor changes, such as typo correction etc.Clarification of input power labelling	HL
1.6	05.08.2015	 Swapped Chapter Sensors and Application Added remark that Output Power adaption has been removed with FW 1.13 	HL
1.7	30.09.2015	 Removed statement for output power adaption 	HL
1.8	14.7.2016	Added reference to NAT-PM-DC600LV	HL
1.9	8.10.2020	Removed reference to UL60950	HL
2.0	16.05.2023	 Complete rework of document Added information about NAT-PM-DC48 Removed information about NAT-PM- DC420 and -DC840 due to end of life 	se